This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713597274

Elementary Reactions of Metal Alkyl in Anionic Polymerization. IV.
Relative Reactivities of α, β-Unsaturated Carbonyl Compounds toward nButylmagnesium Bromide
Teiji Tsuruta; ${ }^{\text {a }}$ Yoshiro Yasuda ${ }^{a}$
${ }^{\text {a }}$ Department of Synthetic Chemistry Faculty of Engineering, University of Tokyo, Tokyo, Japan

To cite this Article Tsuruta, Teiji and Yasuda, Yoshiro(1968) 'Elementary Reactions of Metal Alkyl in Anionic Polymerization. IV. Relative Reactivities of α, β-Unsaturated Carbonyl Compounds toward n-Butylmagnesium Bromide', Journal of Macromolecular Science, Part A, 2: 5, 943 - 962
To link to this Article: DOI: 10.1080/10601326808051452
URL: http://dx.doi.org/10.1080/10601326808051452

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


Elementary Reactions of Metal Alkyl in Anionic Polymerization. IV. Relative Reactivities of a, β-Unsaturated Carbonyl Compounds toward n-Butylmagnesium Bromide*

TEIJ TSURUTA and YOSHIRO YASUDA

Department of Synthetic Chemistry
Faculty of Engineering
University of Tokyo
Bunkyo-ku, Tokyo, Japan

SUMMARY

Relative reactivities of α, β-unsaturated carbonyl compounds toward n-butylmagnesium bromide are determined by competitive reactions with diethyl ketone. α-Methyl group significantly suppresses the reactivity of the acrylic ester in ether, but enhances the reactivity of the unsaturated nitrile under the same condition. A striking decrease in reactivity is caused by the β-methyl group in crotononitrile, whereas methyl crotonate is only slightly less reactive than methyl methacrylate. α-Methyl and β-methyl substituents in unsaturated ketones behave in a similar way to those in the unsaturated esters. Polar solvents, in general, elevate reactivity of β-methyl compounds relative to α-methyl ones. The homolytic (or heterolytic) character of the Grignard reactions is discussed quantitatively in terms of the relative reactivities of the three homologous (unsubstituted, α-substituted, and β-substituted) unsaturated compounds.

INTRODUCTION

Although there have been presented some quantitative measures for reactivities of α, β-unsaturated carbonyl compounds in radical

[^0]reactions, few attempts except for our previous studies [1] have been made to evaluate their reactivities quantitatively in reactions with metal alkyl. In the preceding paper [3] in this series, we reported reaction modes of n-butylmagnesium bromide with $\alpha, \beta-$ unsaturated esters, ketones, and nitriles under anionic polymerization conditions.

This paper is concerned with a study of relative reactivities of the α, β-unsaturated carbonyl compounds toward n-butylmagnesium bromide, which was undertaken to elucidate the initiation mechanism in more detail.

EXPERIMENTAL

Reagents

Diethyl ether was distilled over sodium wire-benzophenone. Tetrahydrofuran was distilled after refluxing over potassium hydroxide, and again distilled over sodium wire-benzophenone. n -Hexane, benzene, toluene, n-butyl chloride, n-butyl bromide, acetone, and diethyl ketone were purified by the usual methods [4]. Methyl acrylate, ethyl acrylate, acrylonitrile, methyl methacrylate, and ethyl methacrylate were purified by the usual methods [5]. Ethyl cinnamate, methyl propionate, and propionitrile were distilled over calcium hydride. Isopropyl acrylate, n-propyl methacrylate, isopropyl methacrylate, methyl crotonate, ethyl crotonate, and isopropyl crotonate were prepared from the corresponding alcohols and unsaturated acids. t-Butyl acrylate was prepared from acryloyl chloride and t-butyl alcohol. Methyl vinyl ketone [6], methyl isopropenyl ketone [7], methyl n-propenyl ketone [8], benzalacetone [9], benzalacetophenone [10], methacrylonitrile [11], cinnamonitrile [12], and crotononitrile were synthesized. The purity of the reagents was checked by vapor-phase chromatography (VPC). Nitrogen gas was purified with active copper at $170^{\circ} \mathrm{C}$. Ether solution of n-butylmagnesium bromide ($\mathrm{BuMgBr} \cdot \mathrm{Et}_{2} \mathrm{O}$) was prepared from 0.13 mole of n-butyl bromide and 0.14 mole of magnesium turnings in 186 ml of ether. Tetrahydrofuran solution of the Grignard reagent ($\mathrm{BuMgBr} \cdot \mathrm{THF}$) was prepared by mixing 1 volume of $\mathrm{BuMgBr} \cdot \mathrm{Et}_{2} \mathrm{O}$ and 1 volume of tetrahydrofuran. Toluene solution of the Grignard reagent ($\mathrm{BuMgBr} \cdot \mathrm{Tol}$) was prepared from 70 ml of $\mathrm{BuMgBr} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($0.95 \mathrm{~mole} /$ liter) and 150 ml of toluene according to Nishioka et al. [13]. n-Butyllithium (BuLi) was prepared from 0.45 g -atom of metallic lithium and 0.15 mole of n-butyl chloride in 300 ml of n -hexane. Diethylzinc was distilled under reduced pressure.

Analyses

The concentration of BuMgBr was determined by acid-base titration. The concentration of BuLi was determined by double titration
with carbon tetrachloride according to Gilman and Cartledge [14]. For the VPC determination of n-butane, a 0.5 - by $3-\mathrm{m}$ stainlesssteel column packed with a mixture of polyethylene glycol 20,000 ($30 \mathrm{wt} . \%$) on $40-60$ mesh Celite 545 and silicone D.C. $550(30 \mathrm{wt} . \%$) on $80-100$ mesh Celite 545 (volume ratio $1: 2$) was used. The calibration curve of n-butane was made from the area ratio of n-butane to diethyl ether of n-hexane, n-butane being prepared by the reaction of BuMgBr with α-naphthol or BuLi with acetic acid. A small amount of n-butane and n-butene originally contained in BuLi solution was measured from the quantity of n-butane and n-butene found after destruction of BuLi with CCl_{4}. The amount of n-butyldimethylcarbinol or n-butyldiethylcarbinol was determined by VPC with a column packed with poly(ethylene glycol), where p-cymene was used as an internal standard material.

Procedure

The reaction vessel was a $100-\mathrm{ml}$ four-necked flask equipped with a gas inlet, a thermometer, a buret, and a three-way cock. BuMgBr or BuLi solution was added from the buret into the magnetically stirred solution of an α, β-unsaturated carbonyl compound and ketone (acetone or diethyl ketone) under nitrogen atmosphere. The reaction was stopped with excess acetic acid after 1 min , and the amounts of products in the reaction solution, n-butane and the carbinol (n-butyldimethylcarbinol or n-butyldiethylcarbinol), were determined by VPC.

RESULTS

Relative reactivity of α, β-unsaturated carbonyl compounds toward $\mathrm{BuMgBr}\left(\mathrm{k}_{2} / \mathrm{k}_{1}\right)$ was determined by competitive reaction with diethyl ketone as shown in the following scheme:

Table 1. Relative Reactivity toward $\mathrm{BuMgBr} \cdot \mathrm{Et}_{2} \mathrm{O}$ at $20^{\circ} \mathrm{C}$

Carbonyl compound	M, moles/liter	K, moles/liter	G, mmoles/liter	I, mmoles/liter	II, mmoles/liter	$\mathrm{k}_{2} / \mathrm{k}_{1}$
$\mathrm{CH}_{2}=\mathrm{CHCOOCH}_{3}$	0.939	0.269	26.0	8.79	13.2	0.43
	0.893	0. 278	52.0	19.9	26.2	0.41
	1. 579	0.265	26.0	6.27	15.7	0.42
$\mathrm{CH}_{2}=\mathrm{CHCOOC}_{2} \mathrm{H}_{5}$	0.774	0.342	25.9	10.2	9.7	0.42
	1. 145	0.348	25.9	9.5	11.8	0.38
$\mathrm{CH}_{2}=\mathrm{CHCOOi}-\mathrm{C}_{3} \mathrm{H}_{7}$	0.979	0.349	25.9	8.9	10.3	0.40
	1.491	0.354	25.9	6.5	12.6	0.45
$\mathrm{CH}_{2}=\mathrm{CHCOOt}-\mathrm{C}_{4} \mathrm{H}_{9}$	1. 051	0.352	25.9	7.9	8.9	0.36
	1.329	0.347	25.9	9.5	8.4	0.22
$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COOCH}_{3}$	1.000	0.338	25.6	14.0	4.1	0.099
	0.890	0. 269	52.0	33.8	10.7	0.096
	1.388	0.347	25.6	12.6	4.7	0.093
$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COOC}_{2} \mathrm{H}_{5}$	0.888	0.342	25.6	11.9	3.0	0.097
	1. 208	0.342	25.6	11.1	3.8	0.097
$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COOi}-\mathrm{C}_{3} \mathrm{H}_{7}$	0.855	0.340	25.6	13.2	1.7	0.051
	1.142	0.340	25.6	12.2	2.6	0.063

Table 1-continued

Carbonyl compound	M, moles/liter	K, moles/liter	G, mmoles/liter	I, mmoles/liter	II, mmoles/liter	$\mathrm{k}_{2} / \mathrm{k}_{1}$
$\mathrm{CH}_{2}=\mathrm{CHCN}$	1.402	0.366	26.5	13.0	5.0	0.10
	2.266	0.368	26.5	9.5	6.8	0.12
$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CN}$	1. 440	0.356	26.5	7.7	6.9	0.22
	2.39	0.371	26.5	4.3	6.5	0.24
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCN}$	1. 379	0.362	43.8	28.0	3.1	0.03
	1. 487	0.392	21.5	12.9	0.9	0.02
	1. 969	0.378	21.5	10.7	3.1	0.06
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCN}$	0. 964	0.376	21.5	5.7	12.8	0.84
	1. 272	0.398	21.5	6.6	11.9	0.56
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$	1.686	0.385	21.5	15.7	0.8	0.01
	2.84	0.378	21.5	15.5	0.6	0.01

[^1]${ }^{\mathrm{b}}$ The value is the concentration of conjugate addition product.
Table 2. Relative Reactivity toward $\mathrm{BuMgBr} \cdot \mathrm{Tol}$ in n -Hexane at $20^{\circ} \mathrm{C}$

Carbonyl compound	M, moles/liter	K, moles/liter	G; mmoles/liter	I, mmoles/liter	II, mmoles liter	$\mathrm{k}_{2} / \mathrm{k}_{1}$

[^2]Table 3. Relative Reactivity toward $\mathrm{BuMgBr} \cdot \mathrm{THF}$ at $20^{\circ} \mathrm{C}$

Carbonyl compound	M, moles/liter	K, moles/liter	G, mmoles/liter	I, mmoles/liter	II, mmoles/liter	$\mathrm{k}_{2} / \mathrm{k}_{1}$
$\mathrm{CH}_{2}=\mathrm{CHCOOCH}_{3}$	0.670	0.290	26.3	5.4	12.5	1.00
	1.341	0.289	26.3	3.5	14.3	0.88
	0.448	0.397	20.2	4.4	5.2	1.0
	0.899	0.391	20.2	3.3	6.8	0.91
$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COOCH}_{3}$	1. 12	0.371	23.8	9.3	4.8	0.17
	1.48	0.398	23.8	8.3	5.6	0.18
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCOOCH}_{3}$	0. 753	0. 405	20. 2	5.3	2.5	0.25
	1. 14	0.398	20.2	4.8	2.9	0.21
	1. 955	0. 973	35.3	9.6	4.5	0.23
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCOOC} \mathrm{C}_{2} \mathrm{H}_{5}$	1. 20	0.919	46.3	17.8	2.8	0.12
	1. 79	0.954	46.3	14.4	5.3	0.20
$\mathrm{CH}_{2}=\mathrm{CHCOCH}_{3}$	0.593	3.11	20.4	0.5	13.1	140
$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COCH}_{3}$	0.459	3.14	20.4	1. 8	6.6	25

윽 © \&				
成				

Here k_{1} and k_{2} are rate constants of reactions (1) and (2), respectively.

As stated in the experimental part, $\mathrm{BuMgBr} \cdot \mathrm{Et}_{2} \mathrm{O}(\mathrm{G})$ was added to the mixture of diethyl ketone (K) and α, β-unsaturated carbonyl compound (M) in ether. After termination with acetic acid, the amount of the carbinol (I) and n-butane was determined by VPC, n-butane being produced through metalation of these carbonyl compounds $[3,15]$. The amount of adduct II was calculated by deducting the quantity of n-butane and carbinol I from the initial amount of the Grignard reagent. Since the quantities of K and M were 10 to 20 times as much as that of G, they were considered constant during the reaction. The relative reactivity of α, β-unsaturated carbonyl compounds ($\mathrm{k}_{2} / \mathrm{k}_{1}$) was calculated according to equation (3):

$$
\begin{equation*}
\frac{\mathbf{k}_{2}}{\mathbf{k}_{1}}=\frac{[\mathrm{II}]}{[\mathrm{I}]} \cdot \frac{[\mathrm{K}]}{[\mathrm{M}]} \tag{3}
\end{equation*}
$$

It was confirmed by another experiment that the alkoxide (I^{\prime}) was not consumed within 1 min by these unsaturated compounds except for vinyl ketones. In the latter compounds, a small amount of I^{\prime} was found to be consumed. Equation (3) was derived by assuming the reaction order as to the Grignard reagent to be the same for the addition reactions to the different carbonyl compounds. The first order as to the ketone concentration was previously confirmed [15]. As shown in Tables 1, 2, and 3, Eq. (3) gave nearly the same values of k_{2} / k_{1} at large varieties of concentration of G, M, and K, which indicates that the reaction order as to the concentration of the unsaturated compounds should be first order. Since the reactivity of diethyl ketone was too small compared with vinyl ketones, acetone was used instead of diethyl ketone, the relative reactivity of diethyl ketone with respect to acetone being 0.21 in diethyl ether and tetrahydrofuran.

Relative reactivities of the unsaturated carbonyl compounds toward $\mathrm{BuMgBr} \cdot \mathrm{Tol}$ and $\mathrm{BuMgBr} \cdot \mathrm{THF}$ were also investigated to determine the solvent effects. The reactivities toward $\mathrm{BuMgBr} \cdot \mathrm{Tol}$ were determined in n-hexane for the convenience of VPC analysis. These results are given in Tables 1, 2, and 3.

The reactivities derived from Eq. (3) are divided into two parts: One is concerned with conjugate addition and the other with carbonyl addition. Reactivities as to conjugate addition ($\mathrm{kc} / \mathrm{k}_{1}$) were calculated by multiplying $k_{2} k_{1}$ with the fraction of conjugate addition in the whole addition fraction, which was determined in the previous paper [3].

$$
\begin{equation*}
\mathrm{kc} / \mathrm{k}_{1}=\mathrm{k}_{2} / \mathrm{k}_{1} \times \text { (the fraction of conjugate addition) } \tag{4}
\end{equation*}
$$

These results are summarized in Table 4.

DISCUSSION

It is seen from Table 4 that there seems to exist no simple correlation, at first glance, between the position of methyl substituent and its effect upon the reactivities of the unsaturated carbonyl compounds toward n-butylmagnesium bromide. For instance,

Table 4. Relative Reactivity toward BuMgBr at $20^{\circ} \mathrm{C}$ a

Carbonyl compound	Solvent				
	Diethyl ether		n -Hexane		Tetrahydrofuran
$\mathrm{CH}_{2}=\mathrm{CHCOOCH}_{3}$	0.42	(0.37)	0.29	(0.28)	0.95 (0.85)
$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COOCH}_{3}$	0.096	(0.077)	0.07	(0.06)	$0.18(0.16)$
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCOOCH}_{3}$	0.19	(0.055)	-	(0.11)	0.23 (0.20)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCOOC}_{2} \mathrm{H}_{5}$	0.19	(0.17)	-	-	0.16 (0.11)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$	0.06	(0)	-	(0)	- (0)
$\mathrm{CH}_{2}=\mathrm{CHCOCH}_{3}$	14.9	(14.9)	14.3	(14.3)	140 (110)
$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COCH}_{3}$	9.9	(9.9)	7.6	(7.6)	25 (17)
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCOCH}_{3}$	-	(3.7)	-	-	110 (16)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCOC}_{6} \mathrm{H}_{5}$	16.6	(16.6)	-	-	170
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCOCH}_{3}$	21.5	(20)	-	-	200
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$ [15]	2.5	(0)	-	(0)	2.5 (0)
$\mathrm{CH}_{2}=\mathrm{CHCN}$	0.11	(0.11)			1.17 (1.17)
$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CN}$	0.23	(0.23)			0.23 (0.23)
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCN}$	0.04	(0.04)			0.15 (0.15)
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCN}$	0.70	(0.70)			0.27 (0.27)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}$	0.01	(0)			- (0)

aThe values in parentheses are $\mathrm{k}_{\mathrm{c}} / \mathrm{k}_{1}$.
α-methyl group significantly suppresses the reactivity of the acrylic ester toward the Grignard reagent in ether but enhances the reactivity of the unsaturated nitrile under the same condition. A striking decrease in reactivity is caused by β-methyl group in crotononitrile, whereas crotonic ester is only slightly less reactive than its corresponding α-substituted ester. In general, more polar
solvents, such as tetrahydrofuran, elevate the reactivity of β-methyl compounds relative to α-methyl ones.

The orders of relative reactivities of the three homologous compounds (unsubstituted, α-substituted, and β-substituted) can be divided into three categories:

Category 1: $\alpha-\mathrm{CH}_{3}>\mathrm{H} \gg \beta-\mathrm{CH}_{3}$
Category 2: $\mathrm{H}>\alpha-\mathrm{CH}_{3}>\beta-\mathrm{CH}_{3}$
Category 3: $\mathrm{H} \gg \beta-\mathrm{CH}_{3}>\alpha-\mathrm{CH}_{3}$
where $\mathrm{H}, \alpha-\mathrm{CH}_{3}$, and $\beta-\mathrm{CH}_{3}$ indicate unsubstituted, α-methyl-substituted, and β-methyl-substituted unsaturated carbonyl compounds, respectively.

According to our parallel study [16] on the Michael reaction in methanol between sodium methoxide and α, β-unsaturated carbonyl compounds, the order of their relative reactivities was found to be $\mathrm{H} \gg \beta-\mathrm{CH}_{3}>\alpha-\mathrm{CH}_{3}$, as shown in Table 5. On the other hand, the reactivities of these unsaturated compounds against free-radical attack are known to decrease in the order $\alpha-\mathrm{CH}_{3}>\mathrm{H} \gg \beta-\mathrm{CH}_{3}$.

It is noticeable in the relative reactivities that a category 1 type of reaction is closely similar to a radical reaction and a category 3 type of reaction to the Michael reaction, a typical ionic reaction. A category 2 type of reaction is regarded as an intermediate stage between categories 1 and 3 . Hereafter we would like to refer to a category 1 reaction as more a "homolytic" reaction [21] compared to a category 3 reaction, the latter being a more "heterolytic" reaction [21] compared to the former.

Reactions of BuMgBr with α, β-Unsaturated Nitriles

As shown in Table 4, the reactivity in diethyl ether decreases in the order methacrylonitrile > acrylonitrile > crotononitrile. The Grignard reaction of α, β-unsaturated nitriles in diethyl ether seems to be one of typical homolytic reactions, where the four-center transition states were assumed as shown in following scheme:

Homolytic reaction:

Heterolytic reaction:

It is to be noted that β-phenyl group significantly enhances the reactivity of the double bond in this homolytic reaction, a fact which is interpreted in terms of the stabilization of the four-center tran-

Table 5. Radical Affinity and Anion Affinity

	Attacking reagent		
Carbonyl compound	Styryl radical $\left(1 / \mathrm{r}_{1}\right)[17]$	$\mathrm{CH}_{3} \cdot[20] \mathrm{CH}_{3} \mathrm{O}^{-}[16]$	
$\mathrm{CH}_{2}=\mathrm{CHCOOCH}_{3}$	1.33	1,030	1,000
$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COOCH}_{3}$	1.92	1,420	5.12
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCOOCH}_{3}$	$0.04[18,19]$	68	56.2
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCOOCH}_{3}$	0.53	-	0
$\mathrm{CH}_{2}=\mathrm{CHCOCH}$			1,900
$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COCH}_{3}$	3.45	-	91,800
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCOCH}_{3}$	3.1	$0.07[18]$	-
$\mathrm{CH}_{2}=\mathrm{CHCN}$	2.70	1,540	3,010
$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CN}$	3.33	2,120	3.89
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCN}$	$0.04[18]$	-	72.3
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCN}$	1.11		119

sition state by the conjugating contribution of phenyl group. β-Methyl substituent, on the other hand, has no such enormous conjugating effect as β-phenyl group and exhibits only steric interference, especially in the homolytic reactions, in a way similar to the case of free-radical attack.

Relative reactivities of the unsaturated nitrile compounds in tetrahydrofuran are very similar to those against sodium methoxide in methanol, the reactivity being suppressed prominently by $\alpha-$ methyl substituent. Tetrahydrofuran bonded to magnesium facilitates ionization of n-butyl anion and at the same time hinders coordination of nitrile group to the Grignard reagent.

Contrary to homolytic reactions, β-phenyl substituent suppresses the reactivity of the unsaturated nitrile in tetrahydrofuran, which is consistent with the general behavior [16] of the β-phenyl group in heterolytic reaction such as Michael reaction [16].

Reactions of BuMgBr with α, β-Unsaturated Ketones

In diethyl ether, methyl isopropenyl ketone is slightly less reactive than methyl vinyl ketone. The reactivity of the β-methylsubstituted ketone was found to be much suppressed. β-Phenyl group did not enhance the reactivity so much as in the corresponding β-phenylacrylonitrile. These results indicate that the Grignard
reaction of α, β-unsaturated ketones in diethyl ether belongs to category 2 , which is an intermediate reaction between homolytic and heterolytic reactions. Tetrahydrofuran as solvent enhances heterolytic character.

Reactions of BuMgBr with α, β-Unsaturated Esters

In diethyl ether, reactions of BuMgBr with α, β-unsaturated esters are also classified in category 2. Tetrahydrofuran again suppresses the relative reactivities of α-methyl- and β-phenyl-substituted unsaturated esters.

Classification of Addition Reactions to α, β-Unsaturated Carbonyl Compounds

As stated above, the relative reactivities of unsubstituted, α -methyl-substituted, and β-methyl-substituted unsaturated compounds seem to change regularly according as the character of reactions with the Grignard reagent changes from homolytic to heterolytic.

We assumed that the ideal homolytic and heterolytic reactions should be the extreme cases of category 1 and category 3 reactions, respectively, and every actual reaction listed in Table 4 can be expressed as an admixture of the two ideal reactions in a certain ratio. According to this assumption, the relative reactivities of unsubstituted and β-substituted compounds with respect to the corresponding α-methyl compound are, respectively:

$$
\begin{align*}
& \log \left(\frac{\mathrm{k}_{\mathrm{H}}}{\mathrm{k}_{\alpha}}\right)=\gamma_{\mathrm{H}} \log \left(\frac{\mathrm{k}_{\mathrm{Hi}}}{\mathrm{k}_{\alpha \mathrm{i}}}\right)+\left(1-\gamma_{\mathrm{H}}\right) \log \left(\frac{\mathrm{k}_{\mathrm{Hr}}}{\mathrm{k}_{\alpha \mathrm{r}}}\right) \tag{5}\\
& \log \left(\frac{\mathrm{k}_{\beta}}{\mathrm{k}_{\alpha}}\right)=\gamma_{\beta} \log \left(\frac{\mathrm{k}_{\beta \mathrm{i}}}{\mathrm{k}_{\alpha \mathrm{i}}}\right)+\left(1-\gamma_{\beta}\right) \log \left(\frac{\mathrm{k}_{\beta \mathrm{r}}}{\mathrm{k}_{\alpha \mathrm{r}}}\right) \tag{6}
\end{align*}
$$

Here the k's are rate constants of the relevant reactions. Subscripts H, α, and β are concerned with the unsubstituted, α-methyl-substituted, and β-methyl-substituted compounds, and r and i with the "ideal" homolytic and heterolytic reactions.

Parameter γ is defined as the fraction of heterolytic character of the reaction $(0 \leqslant \gamma \leqslant 1)$. When the reaction is perfectly heterolytic, the γ value should be 1 . On the other hand, γ should be zero in the ideal homolytic reaction. It would be reasonable to assume that the fraction γ_{H} is not significantly different from γ_{β} when our discussion is restricted within every three homologous compounds having the same polar substituent under a certain condition:

$$
\begin{equation*}
\gamma_{\mathrm{H}}=\gamma_{\beta}=\gamma \tag{7}
\end{equation*}
$$

From Eqs. (5), (6), and (7) a relation between $\log \left(k_{H} / k_{\alpha}\right)$ and $\log \left(\mathrm{k}_{\beta} / \mathrm{k}_{\alpha}\right)$ is obtained:

$$
\begin{equation*}
\log \left(\frac{\mathrm{k}_{\mathrm{H}}}{\mathrm{k}_{\alpha}}\right)=\frac{\mathrm{CB}-\mathrm{DA}}{\mathrm{C}-\mathrm{D}}+\frac{\mathrm{A}-\mathrm{B}}{\mathrm{C}-\mathrm{D}} \log \left(\frac{\mathrm{k}_{\beta}}{\mathrm{k}_{\alpha}}\right) \tag{8}
\end{equation*}
$$

where $A=\log \left(k_{H i} / k_{\alpha i}\right), B=\log \left(k_{H r} / k_{\alpha r}\right), C=\log \left(k_{\beta i} / k_{\alpha \mathrm{i}}\right)$, and $\mathrm{D}=\log \left(\mathrm{k}_{\beta \mathrm{r}} / \mathrm{k}_{\alpha \mathrm{r}}\right)$. Since A, B, C, and D are the terms consisting of relative reactivities of unsaturated, α-methyl-substituted, and

Fig. 1. Relative reactivity of α, β-unsaturated carbonyl compounds. α, β-Unsaturated esters (\bigcirc); α, β-unsaturated nitriles ($(\mathbf{)}$); α, β-unsaturated ketones (). 1, diglycine; 2 , glycine; $3, \beta$-alanine; $4, \epsilon$-amino caproic acid; $5, \mathrm{~L}$ - α-alanyl $\mathrm{L}-\alpha$-alanine; $6, \mathrm{DL}$-phenyl alanine; 7, DLmethionine; 8 , $\mathrm{DL}-\alpha$-alanine; $9, \mathrm{DL}$-norleucine; $10,11,12, \operatorname{BuMgBr}\left(\mathrm{Et}_{2} \mathrm{O}\right)$; $13,14,15, \mathrm{BuMgBr}(\mathrm{THF}) ; 16, \mathrm{BuLi} ; 17, \mathrm{AlBu}_{3} ; 18, \mathrm{ZnBu}_{2} ; 19,20,21$, $\mathrm{CH}_{3} \mathrm{ONa}$.
β-methyl-substituted compounds in the two ideal reactions, inclination and intercept in Eq. (8) can be regarded as constants. Therefore, Eq. (8) anticipates a linear relationship between $\log \left(k_{H} / k_{\alpha}\right)$ and $\log \left(\mathrm{k}_{\beta} / \mathrm{k}_{\alpha}\right)$. The anticipation was visualized by plotting the data (Table 4) of relative reactivities toward n-butylmagnesium bromide as shown in Fig. 1. It is to be noted that the same straight line passes through points for some Michael reaction with sodium methoxide in methanol [16] and with amino group of several amino acids in water [22]. Points located at the right and top of the line represent reactions having strong heterolytic character in contrast with points at the left and bottom. A plot for the α, β-unsaturated ester with n-butyllithium in n-hexane also falls on the straight line. The location of the point for BuLi is shifted considerably to the side of homolytic reaction compared with the corresponding point for BuMgBr in ether, a fact which may be supported by comparison of results in Tables 6 and 7, where the bulkiness of ester groups influences somewhat more significantly the reactivities toward BuLi than $\mathrm{BuMgBr}{ }^{\prime} \mathrm{Et}_{2} \mathrm{O}$.

The most homolytic reactions in Fig. 1 are the reactions of $\alpha, \beta-$ unsaturated ketones with ZnBu_{2} and AlBu_{3}. The reaction modes of these metal alkyls will be published elsewhere.

Table 6. Relative Reactivity toward $\mathrm{BuMgBr} \cdot \mathrm{Et}_{2} \mathrm{O}$ at $20^{\circ} \mathrm{Ca}$

R	$\mathrm{CH}_{2}=\mathrm{CHCOOR}$	$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COOR}$	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCOOR}$
CH_{3}	$0.42(0.37)$	$0.096(0.077)$	$0.19(0.055)$
$\mathrm{C}_{2} \mathrm{H}_{5}$	$0.40(0.37)$	$0.097(0.084)$	$0.061(0.020)$
$\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7}$	$0.43(0.43)$	$0.057(0.055)$	$0.028(0.021)$
$\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}$	$0.29(0.29)$	-	-

${ }^{\text {a }}$ The values in parentheses are $\mathrm{k}_{\mathrm{c}} / \mathrm{k}_{1}$.

Table 7. Relative Reactivity toward BuLi in n-Hexane at $30^{\circ} \mathrm{Ca}, \mathrm{b}$

\mathbf{R}	$\mathrm{CH}_{2}=\mathrm{CHCOOR}$	$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COOR}$	$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCOOR}$
CH_{3}	$1.18(0.94)$	$1.2(0.44)$	$1.11(0.00)$
$\mathrm{C}_{2} \mathrm{H}_{5}$	$1.06(0.82)$	$0.72(0.40)$	$0.75(0.08)$
$\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7}$	$0.74(0.61)$	$0.45(0.28)$	$0.47(0.05)$

[^3]Table 8. Infrared Spectra of Diethyl zinc Systems ${ }^{\text {a }}$

	$\gamma_{\mathrm{r}}\left(\mathrm{CH}_{2}-\mathrm{Zn}\right), \mathrm{cm}^{-1}$	$\nu_{\mathrm{a}}(\mathrm{C}-\mathrm{Zn}-\mathrm{C}), \mathrm{cm}^{-1}$	$\nu_{\mathrm{s}}(\mathrm{C}-\mathrm{Zn}-\mathrm{C}), \mathrm{cm}^{-1}$
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Zn}[24]$	616	561	478
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Zn}-\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}(1: 5)$	612	557	467.5
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{Zn}-\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COOCH}_{3}(1: 5)$	613	557	467.5

aInfrared spectra of diethylzinc systems (0.5 mole/liter) were measured with a KBr cell 0.1 mm in
width in n -hexane at $30^{\circ} \mathrm{C}$.

It should be noted that there is a close correlation between the magnitude of the γ value and the stereoregulating property of the reaction systems. Methyl vinyl ketone or methyl isopropenyl ketone was known to form highly stereospecific polymer with aluminum alkyl or zinc alkyl as catalyst [23]. The plots for the unsaturated ketones with the organoaluminum or organozinc compound are located at the most homolytic portion of the straight line in Fig. 1. Reactions of the unsaturated ketones with n-butylmagnesium bromide or n-butyllithium have larger γ values and do not produce

Fig. 2. Copolymerization of n-propyl methacrylate and isopropyl methacrylate with BuMgBr at $-78^{\circ} \mathrm{C}$. Polymerization in n -hexane with $\mathrm{BuMgBr} \cdot \mathrm{Tol}(\mathrm{O})$ (monomers, 0.56 mole/liter; $\mathrm{BuMgBr} \cdot \mathrm{Tol}$, $30.0 \mathrm{mmole} /$ liter). Polymerization in diethyl ether ($(\mathbf{O}$) (monomers, 1.1 moles/liter; $\mathrm{BuMgBr} \cdot \mathrm{Et}_{2} \mathrm{O}, 52.0 \mathrm{mmoles} /$ liter). Polymerization
 26.4 mmoles/liter).
excellent stereospecific poly(vinyl ketones) [23]. n-Butyllithium in n -hexane polymerizes methyl methacrylate in more stereospecific fashion compared with n-butylmagnesium bromide in ether, a fact which can be interpreted in terms of the smaller γ value of the organolithium compound.

As shown in Table 4, the reactivities toward BuMgBr in n-hexane are not strikingly different from those toward BuMgBr in ether. On the other hand, the stereospecificity of poly(methyl methacrylate) was reported to be much improved wnen n-butylmagnesium bromide was used in hydrocarbon instead of ether as solvent [13]. The apparent inconsistency is considered to arise from the existence
of 1 or 2 moles of residual ether which coordinate to the magnesium atom of the Grignard reagent even after it is treated with toluene in heat, according to Nishioka et al.[13]. The etherates of the Grignard reagent presumably behave in a similar way at the reactions with α, β-unsaturated compounds in diethyl ether and in nonpolar solvents. The easier occurrence of stereoregular polymerization in toluene than in diethyl ether [13] is probably due to differences in mechanisms of propagation stage rather than of initiation stage. In the course of the propagation stage in toluene, monomer molecules of methyl methacrylate coordinate onto magnesium, repelling diethyl ethers from it, and the successive reactions presumably proceed through a four-center mechanism. This consideration would not be unreasonable because the coordinating ability of the unsaturated ester onto metal alkyl was found to be a similar order of magnitude to that of diethyl ether, as shown in Table 8.

Figure 2 seems to support the difference in the propagation mechanisms in ether and hexane. A four-center mechanism should be more predominant for propagation reaction in n-hexane than in diethyl ether, since a larger steric effect of isopropyl group upon reactivities was observed in polymerization in the nonpolar solvent.

As is obvious from Fig. 1, the Grignard reactions in tetrahydrofuran have larger γ values than in diethyl ether, a fact which is consistent with the difficulty of stereospecific polymerization in this solvent.

REFERENCES

[1] N. Kawabata and T. Tsuruta, Makromol. Chem., 86, 231 (1965).
[2] N. Kawabata and T. Tsuruta, Makromol. Chem., 98, 262 (1966).
[3] Y. Yasuda, N. Kawabata, and T. Tsuruta, J. Macromol. Sci., A1, 669 (1967).
[4] A. Weissberger et al., Organic Solvents, Wiley-Interscience, New York, 1955.
[5] E.R. Blout and H. Mark, Monomers, Wiley-Interscience, New York, 1957.
[6] A. Wohl and A. Prill, Ann., 440, 139 (1924).
[7] E. F.Landau and F.P. Irany, J. Org. Chem., 12, 422 (1947).
[8] A. L. Wilds and C. Djerassi, J. Am. Chem.Soc., 68, 1715 (1946).
[9] H. Gilman and A.H. Blatt (eds.), Organic Syntheses-Collective Volume 1, Wiley, New York, 1941, p. 77.
[10] H. Gilman and A. H. Blatt (eds.), Organic Syntheses-Collective Volume 1, Wiley, New York, 1941, p. 78.
[11] D. Gotkis and J. B. Cloke, J. Am. Chem. Soc., 56, 2710 (1934).
[12] H. Plaut and J.Ritter, J. Am. Chem. Soc., 73, 4076 (1951).
[13] A. Nishioka, H. Watanabe, K. Abe, and Y. Sono, J. Polymer Sci., 48, 241 (1960); H. Watanabe, Kogyo Kagaku Zasshi, 63, 1628 (1960).
[14] H. Gilman and F.K. Cartledge, J. Organometal. Chem. (Amsterdam), 2, 447 (1964).
[15] Y. Yasuda, N. Kawabata, and T. Tsuruta, J. Org. Chem., 32, 1720 (1967).
[16] T. Tsuruta, A. Kishi, and Y. Yasuda, unpublished data, 1968.
[17] G. E.Ham, Copolymerization, Wiley-Interscience, New York, 1964.
[18] Y. Minoura, T. Tadokoro, and Y. Suzuki, J. Polymer Sci., (A-1)5, 241 (1967).
[19] Y. Yasuda and T. Tsuruta, unpublished data, 1966.
[20] L. Herk, A. Stefani, and M. Szwarc, J. Am. Chem. Soc., 83, 3008 (1961).
[21] C.K. Ingold, Structure and Mechanism in Organic Chemistry, G. Bell, London, 1954, p. 205.
[22] M. Friedman and J. S. Wall, J. Org. Chem., 31, 2888 (1966).
[23] T. Tsuruta, R. Fujio, and J. Furukawa, Makromol. Chem., 80, 172 (1964).
[24] M. Ishimori and T. Tsuruta, Makromol. Chem., 190 (1963).
Accepted by editor April 29,1968
Received for publication May 8,1968

[^0]: *Part I, Ref. [1]; part II, Ref. [2]; part III, Ref. [3].

[^1]: ${ }^{\text {a Acetone was used instead of diethyl ketone. }}$

[^2]: ${ }^{\text {a }}$ The values are the amounts of conjugate addition product.
 $\mathrm{b}_{\text {Acetone was }}$ used instead of diethyl ketone.

[^3]: ${ }^{\mathrm{a}} \mathrm{BuLi}, 0.0230$ mole/liter; M and $\mathrm{K}, 0.3$ to 0.8 mole/liter.
 diethyl ketone as a standard material.

